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Structure Mapping Generative Adversarial Network
for Multi-View Information Mapping Pattern Mining
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Zhengliang Liu , and Tianming Liu , Senior Member, IEEE

Abstract—Multi-view learning is dedicated to integrating in-
formation from different views and improving the generalization
performance of models. However, in most current works, learning
under different views has significant independency, overlooking
common information mapping patterns that exist between these
views. This paper proposes a Structure Mapping Generative ad-
versarial network (SM-GAN) framework, which utilizes the con-
sistency and complementarity of multi-view data from the in-
novative perspective of information mapping. Specifically, based
on network-structured multi-view data, a structural information
mapping model is proposed to capture hierarchical interaction
patterns among views. Subsequently, three different types of graph
convolutional operations are designed in SM-GAN based on the
model. Compared with regular GAN, we add a structural informa-
tion mapping module between the encoder and decoder wthin the
generator, completing the structural information mapping from
the micro-view to the macro-view. This paper conducted suffi-
cient validation experiments using public imaging genetics data in
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. It is
shown that SM-GAN outperforms baseline and advanced methods
in multi-label classification and evolution prediction tasks.

Index Terms—Multi-view learning, structural information
mapping, graph convolution, generative adversarial network.
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I. INTRODUCTION

IN PRACTICAL applications, obtaining a comprehensive
understanding of objects through a single view is often

challenging. Multi-view learning is currently a flourishing field
in artificial intelligence, with its core idea aimed at integrating
insights from multiple views to enhance the model’s general-
ization abilities [1], [2]. After years of development, multi-view
learning has been proven effective in various fields, including
retrieval systems [3], object recognition [4], [5], disease diagno-
sis [6], [7], etc. It is generally accepted that the effectiveness of
multi-view learning stems from the consistency and complemen-
tarity characteristics of multi-view data. On one hand, the views
essentially depict the same object from different perspectives,
which brings a natural semantic consistency among them. On
the other hand, each view contains unique information, so there
is complementarity in multi-view data [8].

Multi-view learning aims to model each view and optimize
all models, for which several common strategies have been
developed. For example, co-training approaches iteratively train
classifiers under different views [9], [10]. For co-regularization,
efforts are made to enhance the ob-jective function by designing
regularization terms [11], [12]. Subspace learning assumes that
there exists a common subspace in all views, and its objective
is to find the mapping of all sample points in the subspace [13],
[14].

Despite the evaluated effectiveness, the current approaches
could be further improved by modeling the complex inter-view
interactions. In realistic scenarios, e.g., biomedical data analysis,
hierarchical multi-view data are common and the association
pattern between different levels cannot be mined through simple
linear analysis. This phenomenon is initially noticed in the
field of natural language processing [15], where case views
can be classified into macroscopic views and microscopic views
according to the level of expressed information. These two types
of views have different implications for intelligent research.
In general, microscopic views often provide less significant
characteristic information than macroscopic views but usually
contain fundamental factors that lead to macro-level manifesta-
tions and changes. For instance, for complex disease research,
one can investigate microscopic gene mutations from genetic
views [16], [17], [18], and also can observe the macroscopic
lesions from imaging views [19], [20]. In general, the former
is believed to be endogenous to macro-level changes, yet the
exact mechanisms remain largely unidentified [21], [22], [23].
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Fig. 1. Flowchart of the proposed SM-GAN approach. In the generator, structural encoding module includes aggregation convolution operations for mining key
micro-view information; structural mapping module performs the micro-macro structural information mapping to obtain the key macro-networks; the structural
decoding module is to finalize the generated macro-networks. The discriminator judges whether the input macro-networks are real or generated. The discrimination
result (True/False) is determined by the multiple aggregation convolutional layers and fully connected layers. After training, SM-GAN will capture the micro-macro
nonlinear mapping patterns.

Existing methods are generally good at mining view-specific
information, but the knowledge about the multi-view interaction
patterns is limited. This paper innovatively explores the associ-
ation patterns between different views from the perspective of
information mapping from micro-views to macro-views, which
fully leverages the hierchachial complementary of multi-view
data.

Deep learning methods for multi-view analysis have become
emerging research interests [2], [24]. In particular, Graph Neural
Network (GNN) [25], [26] have developed vigorously due to
the increasing tendency of network-based data representations.
Graph Convolutional Network (GCN), as a major improvement
branch of GNN, can efficiently aggregate and extract key infor-
mation of the nodes in graphs [27]. Generative Adversarial Net-
work (GAN) is widely used for data generation or augmentation.
GAN-based multi-view methods have also been emphasized
in recent years [28]. However, these methods generally lack
interpretability, limiting their potential applications. On the other
hand, most current multi-view methods only focus on sample
classification. Yet, in many practical scenarios characterized by
long-term evolutionary trends, the ability to predict the future
evolutionary pattern of data based on the current state is a task in
significant need, especially for preventing certain loss-causing
outcomes, e.g., disease deterioration [29], [30], traffic accident
[31], etc. This paper designs an interpretable deep learning
algorithm, where the convolutional layers are based on math-
ematical modeling to study the impact of micro-level factors on

macro-level manifestations. Our method can be used not only
for sample classification but also for predicting the evolutionary
trend of the data, which broadens its application prospects.

This paper proposed a general framework for multi-view
learning by utilizing the complementary information of multi-
view data from the perspective of macro-to-micro scale map-
ping. First, a network representation is constructed for mi-
croscopic and macroscopic views of data, named as “micro-
network” and “macro-network”. Second, a structural informa-
tion mapping model is established to investigate the mapping
patterns from the micro-network to the macro-network. Finally,
convolutional operations are designed based on the model and
integrated into the GAN architecture to form SM-GAN, as
depicted in Fig. 1. We validate the performance of SM-GAN in
tasks of multi-label sample classification and evolution predic-
tion using the imaging genetic data published in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI).

On the whole, this paper presents a pioneering work about
multi-view mapping pattern mining. It is important to emphasize
that this paper specifically concentrates on view-level infor-
mation mapping patterns, while specific feature-level mapping
patterns (e.g., the patterns describing how specific genes affect
specific brain regions) are not yet considered. The paper employs
efficient deep learning to create a model with an extensive set of
parameters designed for characterizing view-level mapping pat-
terns. Through experimental results, SM-GAN can effectively
and steadily map the original view data to the target view using
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the generator, verifying the existence of the view information
mapping pattern and the effectiveness of SM-GAN in capturing
view-level mapping patterns. This work provides a brand-new
perspective of multi-view learning and lays the foundation for
further exploration, including the detection of the feature-level
mapping patterns (e.g., how certain etiologies like genes regulate
the activities of specific brain regions), which is believed to be
a valuable task with significant application values.

In summary, our contributions are listed as follows:
1) A structural information mapping model is developed. In

this model, multi-view interactions are modeled as a struc-
tural information mapping process from micro-networks
to macro-networks, fully expoiting the intricate interrela-
tionships among various views.

2) A GAN-based deep learning method is proposed. The con-
volution operations are designed according to the struc-
tural information mapping model. The trained model can
extract the information mapping pattern from multi-view
data, and the sample classification and evolutionary pat-
tern prediction are based on the extracted patterns.

3) Effectiveness of SM-GAN is validated on a multi-modal
biomedical dataset, and the results demonstrate that SM-
GAN outperforms other commonly used methods.

II. RELEVANT WORKS

A. Traditional Techniques for Multi-View Learning

Leveraging the consistency and complementarity within
multi-view data is acknowledged as the key to improving the per-
formance of multi-view learning. For this purpose, the generic
and intuitive idea is to train a model for each view and com-
bine the multiple understandings from all views when making
decisions [32]. Representative methods under this idea include
co-training and multi-kernel learning. The former designs an
alternating training process to ensure the consistency of multi-
view information. The latter tries to pre-specify the base kernel
matrix for each view. Cai et al. [33] considered both global
and local cluster structures in co-training, incorporating more
multi-view information than trivial methods. Liu et al. [34]
proposed a solution for incomplete base kernels by adaptively
complementing the missing elements. However, it is worth not-
ing that the definition of the uniformity measure in co-training
and the pre-selection process of the kernel are highly subjective,
which restricts the flexibility of methods.

To better exploit the consistency of multi-view data, re-
searchers have proposed new ideas. For example, some stud-
ies introduce and optimize new regularization terms to max-
imize consistency. Based on the classical support vector ma-
chine algorithm, on the other hand, Ye et al. [12] attempted
to introduce a set of double-sided constraint terms to improve
the robustness. Subspace learning advocates mapping samples
under different views to a common subspace, and the dimen-
sionality of the subspace thus reflects the view consistency. In
this direction, canonical correlation analysis (CCA) is a general
means [35]. Kumar et al. [36] used supervised information to
improve the CCA objective function to obtain a joint multi-view

representation of samples in a common subspace, and the valid-
ity of its method is verified in several data sets.

These works solved certain problems in multi-view learning
and gained fair performance, but the independency of views
caused by primary information fusion remains a great obstacle
to further improvement. Overall, though good performance is
achieved in mining view-specific characteristic information, a
proper way to combine the multi-view information is lacking.
Little is known about the interaction patterns among views,
making it difficult to adapt to realistic scenarios.

B. Multi-View Deep Learning Models

Deep learning is becoming a mainstream research method
in order to improve the efficiency of mining multi-view data.
As reviewed in the literature [2], common deep model training
methods include convolutional neural network (CNN), GCN,
GAN, etc., and this trend is still maintained nowadays.

Specifically, CNN, as a traditional deep learning method,
is widely applied in image-typed multi-view analysis, such
as multi-view 3D object recognition [5] and medical image
segmentation [30], [37]. However, most non-image data do not
have a grid-like structure, which causes a weak performance of
CNN strategy. To adapt to a wider range of multi-view data, the
application of GCN is emphasized [31], [38]. The principle of
GCN is to transfer and update the node feature information on
the network structure, which requires a network-structured data
representation as the prerequisite. GAN is a common generative
model usually for semi-supervised learning. Overall, the ma-
jority of current improvements in GANs within the multi-view
domain are focused on improving architectural designs and
refining training processes [39], [40], while the methods for
encoding and decoding information are still relatively basic,
limiting their ability to extract and integrate information of the
data features. Utilizing convolutional layers as a component of
the generator and discriminator is a promising idea for GAN
improvement [41], [42].

Some deep learning methods have noticed the importance
of the association patterns between multi-view data. However,
due to the black-box nature of deep learning, and the lack of
mathematical models for convolution designing, it is difficult
to show the adaptability of the trained models to application
scenarios. In this context, some studies have attempted to use
deep learning models to improve traditional multi-view learning,
thereby preserving the interpretability of the method [43], [44].
However, previously described problems such as insufficient
view information fusion remain unsolved.

III. METHODS

This section divides the views describing the same system into
two categories. The macro-view network reflects the explicit
manifestations, while the micro-view network delves into the
underlying influencing factors. We then study the micro-macro
information mapping to explore the factor-manifestation effect
pattern. To this end, we first describe a structural information
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mapping model in Section III-A, and then Section III-B pro-
poses a deep learning model to implement the model idea. Sec-
tion III-C demonstrates the application of the method to sample
classification and prediction of data evolutionary patterns.

A. Structural Information Mapping Model

For a sample described by macro-view A and micro-view
B, data, the structural information can be presented by two
matrices SA ∈ RnA×lA and SB ∈ RnB×lB , where nA and nB

correspond to the feature number under a particular view, and
lA and lB are the uniform length of features. Introducing an
indicator t (initialized as 0) to count information aggregation
times, the model elements listed as follows.

1. Micro-network: GA = 〈VA,S
(t)
A 〉, where VA is the vertex

set of the micro-network. This network is constructed
based on micro-view feature matrix. S(t)

Ai
is the i-th row

vector of matrix S
(t)
A , which corresponds to a micro-view

feature.
2. Macro-network: GB = 〈VB ,S

(t)
B 〉. Similarly, VB and

W
(t)
B are the vertex set and weight matrix, and S

(t)
Bi

corresponds to the i-th macro-view feature.
3. Key micro-network: GK

A = 〈VA,S
(T )
A 〉, where T is the

number of structural information aggregating, S(T )
A and

W
(T )
A denote the updated structural information matrix.

4. Key macro-network:GK
B = 〈VB ,S

(0)
BM 〉.VB is the vertex

set and S
(0)
BM is the mapped structural information matrix.

This network is obtained through the structure information
mapping

5. Mapping macro-network: GMap
B = 〈VB ,S

(u)
BM 〉, where

S
(u)
BM denotes the structure information matrix obtained

from the u times of structural information diffusion. After
T times of information diffusion in total,S(T )

BM is finalized
as the structural information mapping result.

For a micro-network S
(0)
i , the information mapping model is

presented as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S
(t)
Ai

= α
∑nA

k=1 S
(t−1)
Ak

+ S
(t−1)
Ai

, i ∈ [1, nA] ; t ∈ [1, T ] (1)

GK
A = Graph

(
S

(T )
A

)
(2)

S
(0)
BM = Mapping

(
S

(T )
A

)
(3)

S
(u)
BMj

= β
∑nB

k=1 S
(u)
BMk

+ S
(u−1)
BMj

, j ∈ [1, nB] ;

u ∈ [1, T ] (4)

GMap
B = Graph

(
S

(T )
BM

)
(5)

where (1) denotes that each vertex in Micro-network aggregates
the structural information from its neighbors. (2) means the key
micro-network is constructed based on the updated structural
information. (3) outlines the process of the structural infor-
mation mapping, where the key macro-network is obtained.
(4) presents information diffusion, where the vertices in the
key macro-network diffuse the information to their neighbor-
hood. (5) denotes the generation of the mapping macro-network
through the diffusion of structural information.

B. Design of the SM-GAN

The model describes the updating and mapping of the
structural information matrices of micro-networks and macro-
networks. It’s essential to note that the structural information
matrix is an abstract concept, with each row describing the struc-
tural information of a certain node (i.e., feature). The specific
information can be represented in different ways, such as node
degree, node centrality, etc. In this section, we will proceed to
construct a deep learning network named SM-GAN based on this
model. In specific, we choose the weight matrix of the network
as the structural information matrix, where each row represents
the connection strength between a node and all other nodes. We
introduce WA ∈ RnA×nA and WB ∈ RnB×nB to respectively
represent the correlation weight matrix of the micro-network
and macro-network.

1) Generator: We improve the GAN architecture by intro-
ducing a structural information mapping module within the tra-
ditional encoder-decoder structure. This addition aims to capture
the effect pattern from the micro-view to the macro-view. In
SM-GAN, the generator is designed with three modules of in-
formation encoding, information mapping, and information de-
coding. These are achieved through by aggregation convolution
(AC), mapping convolution (MC), and diffusion convolution
(DC) layers, respectively.

The AC operation is designed to realize the aggregation of
the structure information in the micro-network, which includes
three main steps. First, the structural information of the vertices
is updated based on the structural information aggregation:

E(t) =
(
A(t) + I(t)

)
W

(t)
A � P (t), (6)

where E(t) ∈ RnA×nA represents the node-to-edge information
aggregation matrix, A(t) ∈ RnA×nA is the adjacency matrix,
I(t) ∈ RnA×nA is an nA-order identity diagonal matrix, W (t)

A

denotes the edge weight matrix representing the structural in-
formation in the micro-network, P (t) ∈ RnA×nA denotes the
matrix of learnable coefficients in the t-th structural information
aggregation, and operator � denotes the Hadamard product
between two matrices.

Second, the change of weight matrix is calculated as:

ΔW (t)
c =

1

nA − 1
F

⎛
⎝ nA∑

q=1,p �=q

E(t)
pq

⎞
⎠ (7)

ΔW (t) = ΔW (t)
c +

(
ΔW (t)

c

)T
(8)

where F ∈ {0, 1}nA×nA is an nA-order matrix with diagonal
elements being all 0 while others are all 1, E(t)

pq represents the
information that vertex p can propagate to edge between p and q,
and ΔW (t) is the weight change matrix. These two equations
describe that edges transmit the information to all connected
nodes, which, in other words, is an edge-to-node information
propagation process.

Third, the weight matrix is updated as follows:

W (t+1) = αΔW (t) +W (t) (9)
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where α is the ratio parameter that affects the degree of weight
update. Setting the number of AC layers as T , after the in total
T times of AC operations, the result network W

(T )
A is finalized

as the key micro-network.
The MC layers are designed to execute the mapping of

structural information from micro-view to macro-view, where
the key macro- network will be obtained based on the key
micro-network. MC operation can be divided into the following
two steps. First, the information mapping matrixW ′ ∈ RnB×nB

is calculated by:

W ′ = MV W
(T )
A MS (10)

where parameter matrix MV ∈ RnB∗nA is for node mapping
and MS ∈ RnA∗nB is for structural information mapping. The
former maps nA vertices in micro-networks to nB vertices in
macro-networks, and the latter maps the nA-dimension micro-
view features to nB-dimension macro-view features. Both MV

and MS are learnable.
Then, the mapped weight matrix of the key macro-network is

finalized as:

W
(0)
BM =

1

2

(
W ′ +W ′T

)
. (11)

The DC layers are designed in the information decoding
module to realize the structural information diffusion based
on the key macro-network. This process encompasses three
primary steps. First, the change of vertex structural information
is calculated based on the structural information diffusion in the
mapped macro-network:

D(u) = W
(u)
BM

(
B(u) + I(u)

)
�Q(u) (12)

where W (u)
BM ∈ RnB∗nB denotes the updated weight matrix af-

ter t-th information diffusion, B(u) ∈ RnB∗nB is the adjacency
matrix of the key macro-network,I(u) ∈ RnB∗nB is annB-order
identity matrix, and Q(u) ∈ RnB∗nB is the trainable parameter
matrix.

Second, the change of edge weights ΔW
(u)
BM is calculated

accordingly:

ΔW ′
c
(u)

=
1

nB − 1

⎛
⎝ nB∑

p=1,p �=q

D(u)
pq

⎞
⎠F ′, (13)

ΔW
(u)
BM = ΔW ′

c
(u)

+
(
ΔW ′

c
(u)
)T

, (14)

where F ′ ∈ {0, 1}nB∗nB denotes an nB-order square matrix
with diagonal all 0 elements while others are filled with the
value 1, D(u)

pq indicates the information that node p can diffuse
to the edge between p and q. These two equations describe the
edge-to-node information diffusion process.

Third, the edge weights are updated based on the weight
change of the edges:

W
(u+1)
BM = βΔW

(u)
BM +W

(u)
BM , (15)

where β is the ratio parameter affecting the degree of weight
update. Setting the number of DC layers as T , after the total T

times of DC operations, the resulting network W
(T )
A is finalized

as the key micro-network.
Interpretability has long been a key requirement for enhancing

the credibility of deep learning models, and the design of our
generator provides a notable improvement in interpretability.
Based on mathematical modeling, AC, MC, and DC opera-
tions are designed. Through AC operations, the representative
structural information is encoded as the key micro-network.
The MC layers then facilitate the mapping of multi-view struc-
tural information, capturing the correlation pattern between
the micro and macro views. Subsequently, the DC operations
decode the key macroscopic structural information, generating
macro-networks closely aligned with the real macro-networks.
These three closely-cooperated modules clearly present the in-
formation transmission and mapping in the multi-view networks,
reflecting the regulation pathway of microscopic features on
macroscopic manifestations, and thus providing new horizons
for further research.

2) Discriminator: The discriminator discriminates the real
macro-networks with macro-networks reconstructed by the
generator. Comprising multiple AC layers and fully con-
nected layers, the discriminator’s input is denoted as W

(0)
D ∈

{W (T )
A ,WB}, where WB represents the weight matrix of the

real macro-networks. The output W (TD)
D is obtained after TD

times of aggregation convolution, which is described as:

ΔE
(n−1)
D =

nB∑
q=1,p �=q

(
U

(n−1)
D W

(n−1)
D �R

(n−1)
D

)
pq
, (16)

ΔW
(n−1)
D =

1

nB − 1

(
FDΔE

(n−1)
D +

(
FBΔE

(n−1)
D

)T)
,

(17)

W
(n)
D = αΔW

(n−1)
D +ΔW

(n−1)
D , (18)

where U (n−1)
D ∈ RnB∗nB denotes the aggregation matrix of the

n-order aggregation, W
(n−1)
D ∈ RnB∗nB denotes the weight

matrix after the (n-1)-order aggregation convolution, R(n−1)
D ∈

RnB∗nB is the learnable matrix, ΔE
(n−1)
D ∈ RnB∗nB is the

information change matrix of the edges in the network, FD ∈
RnB∗nB represents the edge-to-node information transmission
matrix, and ΔW

(n−1)
D ∈ RnB∗nB denotes the change of the

weight matrix, and α affects the degree of weight update.
The fully connected layers are for outputting the discrimina-

tion result of the network based on the matrix W
(TD)
D finalized

by information aggregation:

X(t+1) =

⎧⎨
⎩
ReLU

(
W (t)X(t) + b(t)

)
, if t �= TF − 1

Softmax
(
W (t)X(t) + b(t)

)
, if t = TF − 1

,

(19)
where the input of the fully connected layer is X(0) =

Ran(W
(TD)
D ), Ran(·) is the row-by-row tiling function; TF

is the layer number, and learnable W (t) and b(t) are the weight
matrix and bias of the t-th layer.
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3) Model Training: The objective function of the adversarial
training is as:

min
G

max
D

V (G,D) = min
G

max
D

{
Ex∼Px(x) [logD (x)]

+ Ez∼Pz(z) [1− log (D (G (z)))]
}
(20)

where x is the real macro-network, z is the real micro-network,
and Px(x) and Pz(z) denote the respective distributions of
x and z. G(∗) signifies the macro-network generation based
on the structural information mapping, which corresponds to
the operations described by (7)–(16). D(∗) corresponds to the
discriminator depicted by (17)–(20), whose result indicates the
possibility that the discriminator judges the input network as
real. The training of SM-GAN unfolds in two steps. First, the
discriminator is optimized by solving:

max
D

{
Ex∼Px(x) [logD (x)] + Ez∼Pz(z) [1− logD (G (z))]

}
.

(21)
During the training discriminator, the generator is fitted. Then,

the generator is optimized by solving:

min
G

{
Ez∼Pz(z) [1− logD (G (z))]

}
. (22)

In other words, for the training of the generator, the aim is
to generate networks that are challenging for the discriminator
to distinguish. According to the idea of GAN, the adversarial
training practice brings a competitive relationship between the
generator and discriminator, which can improve the performance
of the converged model [39].

The optimization of SM-GAN relies on backpropagation and
Adam algorithm. After each epoch of optimization, we evaluate
the model performance using the test set, which is divided
into N categories C1, …, CN accoding to the need of the
task. The entire training algorithm of SM-GAN is outlined in
Algorithm 1.

C. The Applications of SM-GAN

1) Multi-Label Classification: The versatility of SM-GAN
shines through in various application scenarios, with the flexi-
bility to adapt to different input networks. In instances where the
input micro-networks and macro-networks belong to subjects
in the same category, SM-GAN will extract the discriminant
features among different label categories. The macro-network
output from the generator is regarded as the reconstructed macro-
networks derived from the micro-view data. In that case, after
training, the generator will obtain the ability of automatically
generating the macro-networks with different labels, while the
discriminator can identify the generated macro-networks.

2) Data Evolution Prediction: In many application scenar-
ios, the collected data have a long-term evolutionary trend. Pre-
dicting future evolution from current time point holds significant
application value. To implement the data evolution prediction
modeling, we divide the multi-view dataset into the early dataset
(representing the current state) and the late dataset (representing
the subsequent states) based on the data timestamp. Subse-
quently, the micro-network, serving as the input of the generator,

is constructed from the early dataset, while the macro-network
as the input of the discriminator is constructed from the late
dataset. This approach allows SM-GAN to capture the dynamic
evolutionary pattern of the data in the training process. In this
case, the mapping macro-networks obtained by the generator
are interpreted as the prediction of the data evolution, and the
following steps need to be carried out.

First, a similarity matrix S between the weight matrices of the
generated and real macro-network is calculated, whose elements
are defined as:

Src =

{
1, if |WCrc

−W Frc
| ≤ 0.1

0, if |WCrc
−W Frc

| > 0.1
r, c ∈ [1, N2] , (23)

where WC denotes the weight matrix of the generated macro-
network and W F is that of the real macro-network. Then, the
similarity Q ∈ [0, 1] is obtained accordingly:

Q =
1

nB (nB − 1)

(
nB∑
r=1

nB∑
c=1

Src

)
. (24)

This similarity allows us to predict the evolutionary trend of
the data. WhenQ exceeds a certain threshold, the current sample
is expected to undergo further evolution, aligning with the state
presented in the late dataset. For this paper, we set the threshold
as 0.5.

IV. EXPERIMENTS AND DISCUSSIONS

A. Dataset and Preprocessing

The ADNI dataset stands as a comprehensive multi-view
dataset dedicated to facilitating the research of Alzheimer’s
disease (AD) and related diseases. The data were collected
according to a strict standard to ensure the data homology. We
used the neuroimaging data and genetic data for the experiment
of this work, which can correspond to the macroscopic view
and microscopic view. We validated the performance of SM-
GAN for the tasks of multi-label classification and prediction
of Alzheimer’s Disease (AD) progression at the patient level,
distinguishing among early mild cognitive impairment (EMCI),
late mild cognitive impairment (LMCI), and AD. EMCI and
LMCI present the prodromal stage of AD, posing a challenging
task due to their similaraities in patient characterizations such as
imaging data. The data collection was approved and supported
by the relevant institutions, and the multi-view data in this paper
had been authorized by ANDI.

For multi-label classification, we selected 233 subjects with
AD, 197 with EMCI, and 203 with LMCI. For the prediction
task, we conducted further sample selection. From EMCI data,
we selected 33 subjects having deterioration to the next stage
(i.e., LMCI) within the follow-up 5 years. These subjects were
named processing EMCI (pEMCI). Then, another 33 subjects
with stable conditions were selected and named stable EMCI
(sEMCI). Similarly, from the LMCI data, 48 stable LMCI
(sLMCI) patients and 48 progressive LMCI (pLMCI) patients
were selected. pLMCI subjects deteriorate to AD within 5 years.
In such settings, pEMCI and pLMCI are the early datasets
described in Section III-C-2, and LMCI and AD are their cor-
responding late datasets. To facilitate model training, sample
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Algorithm 1: The Overall Algorithm of SM-GAN.

Input: Train set DTrain = {W (0)
A ,W

(0)
B }; Test set

DTest = {WC1

A , . . . ,WCN

B }.
Initialize: Number of convolutional layers n.
Repeat:

for t = 1, T do
Obtain key gene network W

(t1)
A using W

(t1−1)
A by

iterating (6)–(9);
end for
Obtain key brain network W

(0)
BM using W

(T )
A using

(10)–(11);
for t2 = 1, . . . , T do

Generate the brain network W
(t2)
BM using W

(t2−1)
BM by

iterating (12)–(15);
end for
D ← {W (T )

BM ,W
(0)
B }

For WD ∈ D do
Discriminate the category of network WD through
(16)–(19);

end for
Optimize the parameters of SM-GAN by solving
(20)–(22);
Input {WC1

A , . . . ,WCN

A } to generator to generate brain
networks {WC1

B , . . . ,WCN

B }
Identify {WC1

B , . . . ,WCN

B } and calculate the accuracy
Acc;

Until the convergence measured by Acc is satisfied.

numbers were balanced across categories. Table I describes the
information of the subjects. Age/gender difference and their sig-
nificance are evaluated among all subjects. The results showed
no significant difference of these two factors.

Each patient has single nucleotide polymorphism (SNP)
data as micro-view and functional magnetic resonance imaging
(fMRI) data as macro-view. The pre-experimental preparations
include the preprocessing of the raw data and the construction
of the networks under the two views. For data preprocessing,
our objective is to get serialized multi-view features. SNP data
are filtered through minor allele frequency (MAF), call rates,
Hardy-Weinberg genetic balance, etc., and the candidate 45
genes are settled. This process is executed using the PLINK
tool. The genes selected in this paper have been indicated in
prior works to play a significant or potential role in Alzheimer’s
Disease (AD) and other similar brain disorders, affirming the
validity of the gene screening process [45], [46], [47]. fMRI
data is preprocessed by the DPARSF tool. The focus of fMRI
preprocessing is to improve the data quality, including head
motion correction, spatial smoothing, time domain filtering,
registration and standardization, etc. The Anatomical Automatic
Labeling (AAL) template is employed to identify 116 brain
regions and 116 serialized features were extracted as macro-view
features.

We construct network-based representations of the data using
the data features obtained through preprocessing. Microscopic

and macroscopic features were separately used to construct
micro-networks and macro-networks. The connection weights
were calculated using the Pearson correlation coefficient, which
was also a validated and effective method [48], [49], [50]:

Pearv1,v2
=

l
∑

v1v2 −
∑

v1

∑
v2√

l
∑

v2
1 − (

∑
v1)

2
√

l
∑

v2
2 − (

∑
v2)

2

(25)
where v1 and v2 represent the feature sequences, and l is the se-
quence length. Note that edges are not presented between every
pair of vertices. In contrast, we set an edge weight threshold
θ ∈ [0, 1], and only edges whose weight was greater than θ
were retained. θ is a hyperparameter that needs to be manually
adjusted, and its determination is described in the experiments
of Section IV-C. The micro-networks in this paper can reveal
the association of gene expressions, while the macro-networks
illustrate the functional connections between brain regions.

B. Performance in Classification and Evolution Prediction

The multi-label classification performance was evaluated us-
ing accuracy (ACC), precision (PRE), recall (REC), and F1-
Score (F1). The prediction task was evaluated by ACC, REC,
specificity (SPE), and balance accuracy (BAC). These evaluation
metrics are formulized as follows:

ACC =
TP + TN

TP + TN + FP + FN
(26)

REC =
TP

TP + FN
(27)

SPE =
TN

TN + FP
(28)

BAC =
SEN + SPE

2
(29)

PRE =
TP

TP + FP
, (30)

F1 =
TP

TP + 1
2FP + 1

2FN
(31)

where TP , TN , FP , and FN were true positive, true negative,
false positive, and false negative, respectively.

For a comprehensive comparison, we introduced three
widely-used deep learning techniques, i.e., Deep Neural Net-
work (DNN), CNN, and GCN, as the generators, obtaining
3 baseline methods denoted as DNN-GAN, CNN-GAN, and
GCN-GAN, respectively. Additionally, ablation experiments
were conducted, wherein the AC, MC, and DC layers were
replaced by plain DNNs, leading to three variants of SM-GAN:
SM-GAN (no AC), SM-GAN (no MC), and SM-GAN (no
DC). Furthermore, we explored different network construction
methods. In the original SM-GAN, the edges in the multi-view
networks were constructed based on Pearson’s correlation. In
this section, we compared this method with alternatives, specif-
ically Kendall and Spearman correlation coefficients.

Table II showed the performance of the above methods across
different tasks, and Table III compared the network construction
methods. Fig. 2 displayed the corresponding receiver operator
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TABLE I
BASIC INFORMATION OF THE SUBJECTS

TABLE II
PERFORMANCE COMPARISON IN IDENTIFICATION AND PREDICTION TASKS

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT NETWORK CONSTRUCTING METHODS

characteristic (ROC) plots, illustrating comparisons between
different deep learning architectures (a) and network construc-
tion methods (b).

Notably, SM-GAN outperforms other approaches in all tested
tasks. Specifically, the multi-label classification accuracy of
SM-GAN was 78.13% and the evolution prediction accuracies
had reached 86.36% (EMCI-to-LMCI prediction) and 88.54%
(LMCI-to-AD prediction). Also, it can be observed that the
networks constructed by Pearson’s correlation analysis were
superior to the others.

C. Results of Model Finalization

In this paper, the model was finalized in two aspects. On the
one hand, three hyperparameters in SM-GAN were manually
optimized: (1) edge weight threshold θ ∈ [0, 1] affecting the
edge density of the networks. (2) weight update ratio α in each

AC operation. (3) weight update ratio β in each DC operation.
On the other hand, adversarial training was applied to optimize
the parameters in all trainable matrices.

The performance of SM-GAN under different parameters was
examined by ACC and the results were shown in Fig. 3. Based on
the results, the optimal parameter combination of α = 0.5, β =
0.5, and θ = 0.4 is determined. In Fig. 4(a) and (b), the changes
in loss and the root mean squared error (RMSE) between the
real and the generated macro-network in the training process are
depicted for all 7 comparative methods. The RMSE is calculated
by:

RMSE (fReal,fGen) =

√
1

m

∑m

i=1

(
f
(i)
Real − f

(i)
Gen

)2
(32)

where fReal and fGen respectively represents the vector ob-
tained by flattening the weight matrix of the real and generated
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Fig. 2. Comparisons of method performance are depicted through the ROC curves. (a) The comparisons of the deep learning approaches. (b) The comparisons
of different network constructing method.

Fig. 3. Effect of parameters on the performance.

network, f
(i)
Real and f

(i)
Gen represent the i-th element of the

vectors, m is the vector length. In the multi-label classification
task, RMSE is obtained from the comparison of real/generated
networks of the same category. In the evolution prediction task,
the macro-networks generated by SM-GAN was based on the
early data but compared with the macro-network of the late data.

As illustrated in Fig. 4, SM-GAN exhibited the earliset con-
vergence and achieved the lowest loss and RMSE values after
the training, indicating the superiority of the SM-GAN method.

D. Structural Information Mapping Performance

Two sub-experiments were conducted to compare the multi-
view information mapping ability of SM-GAN. First, Fig. 5

visualized the average generated macro-networks with the sig-
nificant functional connections between brain regions. To show
the effectiveness of information mapping, we further calculated
the residual matrices and mean absolute error (MAE) between
the generated and real networks. For the multi-label classifi-
cation, as shown in Fig. 5(a), the generated macro-networks
were compared with the real macro-networks within the same
category. The comparison in evolution prediction is depicted
in Fig. 5(b). Using the micro-view data of pEMCI and pLMCI,
the corresponding generated macro-networks are compared with
the real macro-networks of LMCI and AD subjects. As shown
in the results, the macro-networks generated through structural
information mapping had the best similarity to the ground truth
and the smallest MAE values among all comparative methods.
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Fig. 4. Training of SM-GAN. (a) The training performance illustrated by loss change. SM-GAN has the smallest fluctuations, fastest speed, and lowest loss
value after convergence. (b) The training performance comparisons are illustrated by the root mean squared error (RWSE) describing the difference between the
generated and real networks. Similarly, the results indicate the superiority of SM-GAN.

SM-GAN accurately captured the nonlinear information map-
ping pattern from the micro-view to the macro-view data.

Second, this paper use four metrics [51] to measure the
topological properties of real and generated macro-networks.
Denoting the node number as N , the metrics were descriced as
follows:

1. Edge number (EN): Number of the connecting edges in
the networks, which can affect the network density.

2. Global efficiency (GE): This metric describes the trans-
mission capability of network information:

GE =
1

N (N − 1)

∑
i�=j

d−1ij (33)

where dij represents the length of shortest path from node
i to node j.

3. Characteristic path length (CPL): This metric refers to
the average distance between one vertex to another, repre-
senting the information transferring ability. The definition
equation is:

CPL =
1

N (N − 1)

∑
i�=j

dij (34)

4. Clustering coefficient (CC): The CC value of a network is
calculated by averaging of the CC values of the vertices
in the network. This metric evaluates the ability of local

information transmission, which is defined as:

CC =
1

N

∑
i

ti
ki (ki − 1) /2

(35)

where ki denotes the neighoring vertex number of vertex i
and ti represents the number of the existing edges between
all neighboring vertex of i.

We assessed the similarity between the generated network
and the real network using the selected metrics, thereby vali-
dating the information mapping capability of SM-GAN. Fig. 6
showed the comparing results. For denotations, I-SM-EMCI, I-
SM-LMCI, and I-SM-AD denote the generated macro-networks
based on the micro-view data of EMCI, LMCI, and AD sam-
ples; P-SM-LMCI and P-SM-AD denote the generated macro-
networks based on the micro-view data of EMCI and LMCI
samples, respectively.

Table IV further showed the p-value results of t-tests to
indicate the significance of the metric difference. As shown,
the real macro-networks in different classes had significant
differences from each other, indicating that the selected metrics
could effectively distinguish samples. In addition, no significant
differences were observed between the real/generated macro-
networks within the same category, indicating that SM-GAN
can effectively perform cross-view information mapping.
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Fig. 5. Visualization of the generated macro-networks and residual matrices.
(a) Results for 3-label classification task. (b) Results for risk prediction task.
The generated networks are based on the early data (EMCI & LMCI) while
the real networks are constructed from the late data (LMCI & AD). From the
experimental results, functional connections exist between every pair of brain
regions. To better illustrate the characteristic association patterns corresponding
to different stages of disease development, the edge weights below the threshold
θ are reset to 0.

TABLE IV
T-TEST RESULTS OF NETWORK TOPOLOGICAL PROPERTIES

E. Effectiveness of the Designed Convolution Operations

The effectiveness of AC, MC, and DC operations was vali-
dated by two experiments. For the classification task, we defined
Wac,mc,dc as the macro-network obtained by the original SM-
GAN, Wac,mc as the macro-network obtained by the SM-GAN
variant with DC layers replaced by DNN, Wac as that obtained
by the variant with DC and MC layers replaced by DNN, and
W were obtained through the SM-GAN with all three types of
convolution layers replaced by DNN. Fig. 7 presented the t-SNE
results to visualize the samples in the test set. As observed, the
t-SNE results of the originally proposed SM-GAN (Wac,mc,dc)
owned the best clustering effect, indicating the proposed convo-
lution operations improved the ability of sample identification.

To visualize the effectiveness of the proposed convolution
in the evolution prediction task, we compared the similarity
between the network generated based on early data and the real
network of late data. The comparison was conducted between
SM-GAN and 3 variants. Specifically, the weight matrix of
the network output by the generator in the prediction task was
denoted as prediction matrix P , with the name of the late stage
as the superscript and the convolutional layers contained in the
generator as the subscript. For example, the prediction matrix
generated by the original SM-GAN (containing all convolutional
layers) in the EMCI-to-LMCI prediction task is denoted as
PLMCI
AC,MC,DC . Also, we calculated the corresponding residual

matrices and MAE values between prediction matrices and
real networks. All results were displayed in Fig. 8. It can be
concluded that the original SM-GAN can generate the best
prediction results, having the lowest MAE compared with the
real data, which demonstrated the effectiveness of the proposed
convolution operations.

F. Comparison With Commonly-used Methods

To provide a more clear indication of the effectiveness of
the proposed approach, SM-GAN was compared with several
state-of-art studies for AD prodromal stage identification [52],
[53], [54], [55], [56] and disease risk prediction, [20], [27],
[56], [57], [58] as shown in Table V. We noted that most
multi-label classification studies were generally based on normal
control (NC), MCI, and AD. However, the similarities between
prodromal stages of disease made the classification in this paper
more challenging. In this context, SM-GAN still performed the
best in both sample identification and evolution prediction tasks.

G. Limitations and Future Works

SM-GAN has achieved promosing performance for the AD
progression modeling in this work, demonstrating the effec-
tivness and feasibility for mining the influence pattern from
micro-views to macro-views from the perspective of structural
information mapping. In this work, SM-GAN focused on the
view-level information mapping, while the mapping pattern
between specific features remains unknown (e.g., the patterns
about how a specific gene influences a particular brain region).
We believe that exploring this specific and detailed multi-view
information mapping model is a promising direction with great
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Fig. 6. Box plots comparing the generated and real macro-networks. (a) Comparison for multi-label classification tasks. (b) Comparison for evolution prediction
tasks.

Fig. 7. The t-SNE results of the subjects in three categories under three variants of SM-GAN and the original SM-GAN.

TABLE V
PERFORMANCE COMPARISON WITH THE STATE-OF-ART APPROACHES
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Fig. 8. Comparation of the generated/real macro-networks in the evolution prediction tasks.

practical value. We are now working on several related works
aiming to portray a more detailed and specific multi-view infor-
mation mapping model.

The experiment setting of this work utilizes public-domain
biomedical data, which were collected and preprocessed under
protocols with better quality controll and curation than in clinical
practice. We acknowledge that the current data size and diversity
might be insufficient to fully validate the generalization perfor-
mance of SM-GAN. We are actively exploring the feasibility of
applying the SM-GAN model to larger-scale datasets collected
in a clinical practice setting. By training on a larger, more di-
versified dataset, we can develop a more stable and generalizble
multi-view data mining framework.

V. CONCLUSION

This paper proposes a novel multi-view learning method
to explore the role of micro-views on macro-views from the
perspective of view information mapping. In this paper, the
main contributions involve a structural information mapping
model and a GAN-based deep learning framework called
SM-GAN. The generator includes an information mapping
module based on the regular “encoder-decoder” structure to
generate a macro-network based on the micro-network. We
conduct rich experimental validation on ADNI imaging ge-
netic data, and demonstrate the effectiveness of SM-GAN
on the tasks of multi-label classification and data evolution
prediction.
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